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The Finite Sturm-Liouville Transform

By

A. Cemal Eringen
Illinois Institute of Technology

1. Introduction

It is known that certain partial differential equations

can be solved with the use of particular types of definite

integrals having appropriate kernels. The choice of kernel

depends on the type of boundary value problem. The solution

obtained by these transforms is direct in the sense that it

contains the boundary values in the solution. This, of course,

is lacking in the classical approach. Finite Fourier trans-

forms are of this type £1).

Recently Tranter [2], used a Legendre polynomial as a

kernel. Scott £3] following a similar approach used a Jacobi

polynomial as a kernel which extends the result of [2].

It is the purpose of the present paper to extend and

unify all such special transforms. Thus we employ a kernel

which may be determined to suit each particular type of problem.

The transform can be employed to solve a wide class of linear

second order partial differential oquations.

In this paper we deal only with those transforms whose

intervals are finite. Thus, the results obtained here are

particularly useful for finite domains, or domains which are

finite in one direction. An extension to infinite domains

and singular cases will be made in a later paper.
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2. The Sturm-Liouville Expansion

A second order, linear, homogeneous differential

equation containing an arbitrary parameter X. has the

general form:

Myv PoV yy + ply y + (P 2 + %P3 )v - 0 (1)

a 0 y -Y bo

where Pi j pi (y) ; v and y are the dependent and real inde-

pendent variables respectively. Indices after comma repre-

sent differentiation, i.e.: 4 - #d/dy.

Equation (1) can be transformed into the canonical

form:
d2

Lu .u 0  L q(x) - 2 a4x b (2)

where:

u X 6(x)v , x - ,J(p 3 /po)l, 2 dy

a -f O(p/Po) dy b o(p3/Po (3)

q(x) - 8 x(xW - 4(X) , e(x)- (p 3 k 2 p/) 1/4q~ U - ( x) 0

O(x) - p2/p 3  k - exp, (pl/po)dy

It is simpler tp work with (2).

We consider two solutions O(x,%) and l(x,7) of (2)

satisfying the boundary conditions;

(a,,,) - sina , # (a,7.) - -cos Q

)ýb,6)- sine \1)ý(b..) - -coop

Both solutions are unique if q(x) in real continuous ever

where in (a,b) and has finite limits for x- a and x b
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(see [43, p.6). We can build up 4(x,%) and k(x,%) as a

linear combination of two independent solutions 00(X,%)

andt(x.k} of (2). For let:

0 N~) 0(x'-&) - 0 0(X,%)[•o0(a,%) Cos C + Vx (aX)sind]

0 W o(x'%)[0o(a[ko~cos P+ oox(aksina]

S- ÷ b~si~ 5

- \o(x,%)[Oo(b,%)cos5 + 0o'x(b,%)sinP]

Functions O(x,%) and )(x,%) defined by (5) satisfy (2) and (4).

Here W(uv) is the Wronskian, and can be shown to be indepen-

dent of x.

Let )n be a root of W(CO) -0. Then we have:

u -Xn W(OnuXi~)* On'n9x - n~x~ 0

or
i On,xl•n" ýn,x%n

where:

O 0dzx.6) and

Hence the integration gives:

\uX, %n) - knO(xIn) (6)

Consequently O(x,½n) and k(x,xn) satisfy all of the boundary

conditions (4).

It is also easy to show that O(x, A) is an orthogonal

set. For, in view of (2), (4) and (6) we have:
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""x (-,4 - r - J' Oh) - 0,
a am

Hence we can write:b

Xb' (x°•ni)O(x,.%)dx - N28mn (7)

where 8mn is the Kronecker delta (equal to zero for mfn,

one for m-n)

It can ba shown also that all roots of wN() - 0

are real and distinct (see [4], pp 11-12).

From (5) and (6) it follows that:

0 (b.n) cosý + o, x(bn) s in(
kn a o(a,XnJcosa ' +oox.(ao.nsina

o (b,X.os•o n ko.rx(b,%.n)sn (8)
i~ ~ ~ ~ ( 9%an) coa+ •oYaJs na

If now f(x) is an intearable function over (ab) and if alxtb,

we have the Sturm-Liouville expansion of f(31):

® b
f(x) E b /W N

nno n

For the convergence of (9) to f(x) see [4] pp 12-15 or )5]

pp275-276.

3. Finite Sturm-Liouville Transform

Let f(x) be a real continuous and intearable function of x,

in the interval (ab). We define the finite Sturm-Liouville

transform S~f} . T(X.) associated with system (2) and (4) by:
L n b
S{f)= )fy(y Y,.n)dy (10)

a
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where:

(Y,,)n) - nkn / (Xn) 1' 2 (yOn) (11)

The inversion theorem now follows from (9):

00

f(x) - T(*.n)*(xxn) (12)
n-o

Here functions *(y,.n) are orthonormal, i.e.:

b
J* *(x,% )*(xo•. 3 )dx - amn (13)

a n

This is readily seen from (7) and (11).

Equations (10) and (12) are basic for the solution of some

partial differential equations.

4. Transform of Lf

We are now going to prove that:

Ilk ILf1 a S4 q(x) f - a 2f ax2 - Bf()Nn, t)

+ %nT-(%n0t) (14)

where:

Bf(Mnot) " [ knIw•(')J 1 2 t - f(b,t).2%A-
n

-f,(bt• f (at)cos +÷ I(a,t) sinc 3 (15)

is a function depending on the boundary values of f(xt),

f (x~t) at x - a~b. Subscript f implies that the function Bax
contains boundary values of the function f. HRre S. repre-

sents the finite Sturm-Lioville transform taken with respect

to x:
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To prove (14) we mutliply Lf by *(x% n) and integrate

between (a,b), that is, by definition we have:

34Lf} I a (q(x)f(xt) - d2ff/x2 l(x,0,)dx (17)

Integrating the second term in the integrand of (17) twice

by part we obtain:

S4 Lfj - -Ef, O -" xf]b + jb f(x,t)L*(x,%,)dx (18)
a o

If we now use (4) and (6) in the first term of the right

hand side and (2) inside the integrand we obtain (14).

5. Solution of Some Partial Differential Equations

a) Let us consider a parabolic partial differential

equation

Mv + p4~t - 0 (19)

where Mv is defined by (1), pi p Pi(yt) are known and

v(yt) is the unknown dependent variable.

The use of transformation (3) reduces (19) to:

u - p(xlt)]u + (p 4 1P3 )u,t - 0 (20)

where:

p(x,t) - q(x,t) - p4 Po( k(2Po) 2 d.(pop 3 k2) (21)

Here q(xt), k(t) and X(t) are given by (3) with t as a

parameter. If 4(x,t, n) and *(x,t,%•n) are now obtained as

before except with q(x) replaced by p(xt), t a parameter,
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and p4,/p3 a function of t alone, then (20), with the use

of the finite Sturm-Liouville transform, can be reduced

to an ordinary differential equation in t. For, let

p 4 /p 3 - r(t), then application of the transform to (20)

c.ves:

-Bu(%n,t) + (%-%n)(?n,t) + r(t)i %t(%nt) - 0 (22)

Equation (22) is of first order. The complete solution is:

(%n, t) - C(%n)exp -" dt) + [exp (tC dt)

n n -ejt~n -. %
tBu/r) [exp (f-tfn7% dt)]dt (23)

Now, inversion theorem (12) gives:

u(x,t) = Z n t)*n?(xotv. ) (24)'
n-o

Therefore, the solution of (19) is effected. We must, however,

remember that at least one of each pair of boundary values

u(at), u (at) and u(bt), u (bt) must be known. Byax 'x

selecting a and 0 properly in Bu(%n,t) we can maie the terms

containing the unknown pair zero. Of course any knowledge of

the boundary values of u leading to the complete evaluation

of Bu is sufficient for the solution.

b) A second order linear partial differential equation

containing a parameter %. has the general form:

Nv + a4 v z + aSv*T + (a 6 + % 7a)v - 0

(25)
Nv a1 v,,5 + 2a 2 v, T + a3v,,,
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where aj - ai(z,T). If the equation is of elliptic t~ye

we have:

a1a3 - a 2
2 ;0 (26)

Cvnsider now an elliptic equation (25). Let t(z,T) -

const. and 7(z 0¶) - consto0 respectively be the solutions

of the following differential equations:

dT/dz - C1 (ZOT) dT/dz- C2(z-T)

C .~ _a t ia a2 2 1/2 (27)

12I a, as1 a 1

If we set:

2Yi+ r 21 (28)

equation (25) can be transformed into the canonical form [6]:

V + (P2 + ?•Ps + + +4Vt ,tt - 0 (29)vyy ply° (Py P) 41 t

where:

P 1  Py I P2i2a 6 /0 1 P3 2a 715

P4  ;Pt I al(Y z 2 + t 2+ 2 a 2 (yz y T t t

+ a3 (yT2 + t T 2) (30)

Here operator P is defined by:

"P ÷-N4+a4 0 + (31)

and N4 is given by the second of (25).

Using the transformation (3) with po0  1, (29) becomes:

u xx + ( - p)u + rlu t + rou'tt - 0 (32)
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where:

p - q(xt) - m:4g7 - mgtt , ro - P3-

rI - mp4g * 2mg, , g - (P3k2 )_ 1 /46

a M (k2/p3 1/4 (33)

In the special case where rl, and r0 ;re functions of t alone

equation (32) can be transformed into an ordinary differential

equation by applying the finite Sturm-Liouville transform.

Hence:

rou tt + rlUt +. (%-%n)Z(Xnlt)- B(%nlt)(4

We can now either use transformation (3) with respect to t,

with ro, rl replacing po' p1 and P2 - 0, P3 - 1 and find

the solution of (34) and then invert it or we can solve (34)

directly for Z(%n t) and then (24) gives u(Xot).

It must be remembered that this method has the advantage

that it contains the boundary values of the function within

the solution, consequently, the difficulty of satisfying

boundary conditions is eliminated. The method is also valid

in the cases where the usual technique of separation of

variables fail.

6. Solutions o and )( of Some Special Equations

Below are given two independent solutions 0o and ko

of some special differential equations (D. E.) of mathe-

matical physics. Their canonical forms (2) will be given

by only determining u, q, and X.
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a) Bessel Functions

v + 1 v ('92 _- 2 v- 0 (D. E.)
y

U M 1/ * y w x q = (v2 _.1)X-2 82

oo~,%)- x 12 -k (xs) ,)Koxu%) x x1 2y, (xs

Interval (a~b) should not contain x - 0.

b) Spherical Harmonics

(l.2)v+y [ v(V~l) - 2]1 (D. E.)
fly 1 -Y

2
- v coo 1 x y = Sin x *q T -~ tan2

-&-V (V+l) 00~(x,%.) - cosl/2 x v1(sin x

\0 x.,%) - coos1/2 X Q./ (sin x

Interval (a~b) should not contain (-1, 1).

c) Hermits Polynomials

v yy YVUY + nvO- (D. E.)

2 2
U .IV, y mex *q y -T~ .nn

0 (x%)a-xf 14 Hen Wz * XO(x,%) e- x2I4 hen (x)

d) Tschebyscheff Polynomials

(1-y 2)v 8yy Y- # y .+ n2v - 0 (D. E.)

u av y y sin X, q - 0 n

#O~x,-& Tn(sifl x) -coon n(sin 1 y)

ko~l%)- U(sin x) -sin n(sin~lY)
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e) Mathieu Functions

U 1 2 + N. - 2h 2 cos2xi1u - 0 (D. E.)

S(x,-&) - ce2n(x), ce 2n+l(x) Se2 n(x), S2n4.l(x)

(2) (2) (2)
-oC(x,%) ce 2 n (x), ce 2 n÷1  (, se2n(W

S2n+l2) (x)

(4 0, 1, 2, ... except for se2n only n - 1, 2, .

$o(x,-&) is periodic.

f) Wittaker Functions
1 2v + (-1÷ + ÷ + v' (.,yy TyZ v D .

(x/2)/ 2v. y x2/46 q 16 ,2"17, +2

4x2 
T9

-o(x,%) (x/2) 11 2 W (X2/4), ( (/2) 1/2

W (-x2/4) (W)
ýk4L

Interval (a,b) should not contain x - 0.

7. Application

As an illustration we solve a heat conduction problem

which may be looked upon as a mathematical model of volcanos.

The problem also has application in the exhaust parts of jet

engines. As far as I know the problem has not previously

been solved.

SHere comma does not mean differentiation.
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Consider the conical sheel enclosed by two coaxial

cones having the same apex 0, and two concentric spheres

having 0 as their center (Fig. 1).

frr

Spherical Sphericalsur face /sur face

Fig. 1

In polar coordinates the inner and outer conical

surfaces are given by e- 60 and 6 - and the end

surfaces by r - r0 and r ri.

Problem: Determine the steady temperature distribution

within the. shell under the general axi-symmetric boundary

conditions in temperature. This is the general Dirichlet

problem for the domain under consideration. The differential

equation and boundary conditions (B. C.) are given below:



- 13 -

(D. E.) AV - r"-2 (r 2V )r) r 2  (1 -Y2)V ty] ,0 (3
(35)

y - cose r ,r<r eo. e 4e1

(B. C.) V - Vo(r) for e - o0

V - Vi(r) for 8- _el ro°1r<rl

(36)
V - V3 (e) for r - ro ]eo <e < e1
V - V4 (e) for.r - r1

Here V(ry) is the temperature function, r and e are the

polar coordinates.

Solution: We can exclude the second term of (D. E.) (35)

if we use a finite Sturm-Liouville transform associated with

the Legendre equation:

S(1-y2 )v y y+ V (vl)v - 0 (37)

In view of (6, b) with A - 0 we find that if we select

y - sin x, u - v coB1 /2 x we can transform (37) to canonical

form leading to solutions:
(x,%) - co08/2x a P, (sin x) 1X,(x,x) 1 cos 1 /2 x

"Qv (sin x) • = v'v+l) (38)

where Pv and Q are Legendre functions of the first and

second kind, respectively. In view of (14), when we apply the

transform to (35) the second term gives - Vn (Vn l) - BY (-=,%n)

Now B. contains four arbitrary functions which must be

specified on the surfaces 6 - eo and 0 - 61c The terms con-

taining the derivatives of v are not given. Thus if we
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select a = - 0 these terms drop out, leaving the terms

containing o(r) and vl(r), which are given. Hence

•(x,.) and wo(X.) of (5) become:

O(x,%.) a cos81 /2X0 cos1 /2x [P. (sin x)Qv (sin xo)

" Pv (sin xo)Qv (sin x)J , o -0"XO (39)

X1 "•n el o W

By (11) and (8) we have:

*(x,)&n) - Eknlw= O,(n)]lI2 O(x,%n)

112cosl,,2x V (Sin x1 ) (40)n cosl/ 2 x Pn (sin xi)

IPn

Calculation of w(.%) - 0 •X - ( O,x gives

0N.) - Cos 1 /2X Cos1/ 2 x, [PV(sin xo)Qv(sin xI)

(41)
- Pv (sin xl)Qv (sin xo))

Consequently, the roots n V n (V n+1) of w(-.) - 0 satisfy

the following equation

P (sin xl) Qv (sin (42)
PV(sinx1- Qv (ain507

Therefore *(x,&n) is completely determined.

After transforming (35) with y - sin x and u -v coo1 12x

we apply the finite Sturm-Liouville transform. That is, we

multiply the equation by *(x,%n) and integrate between xO and

xI. The result is:
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(r 2•,r) ,r - (vn+1)V - BV(r
(43)

BV (r,%,) - (nk•.•(•n%) Vo (r) - kn'Vli(r)J

Equation (43) is an ordinary differential equation of Buler

type whose solution can be found by variation of parameters.

Hence:

V(rv n) C (V n)r n + C2 (Vn)r n ÷ F(rVn)

jrE PIn (44)
F(rv n) .+ 2r N •n I (rv rn v .- -v - )

n

Let the transforms of V3 () and V4 (e) be V3(Vn) and V4 (vn})

C and C2 will then be determined from the remaining conditions:

V - 3 (Vn) , for r - ro

t W V4 (,n) o for r - r, e

This gives two linear equations for C, and C2 whose solutions

are: -v -1- -v -l

EV3 (vn)-F (rogvn)3ri O. (Vn)-F(r,,v n )r n
nron r n -rl ro

(45)
V V

C2 (Vn) = tV4 (vn)-F(rl ,vn)r o  n .[)F3 (Vn)-F(roVn)]rI n

r ro n rl -rl n ro0 n

Hence, V(r,vn) is completely determined. The inversion theorem

(12) now gives:

V(rx) - ((r,46)

where the summation is extended over all roots of (42).
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The analysis given above is formal. It can, however,

be made rigorous by showing that the solution satisfies both

the differential equation and the boundary conditions.

It may be worth while to remark that with the use of

the method of separation of variables the solution of the

above problem would have been difficult and lengthy, if not

impossible.
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